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630090, Russia
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Abstract. The prototype quantum master equation is proposed for modelling molecular
rotational relaxation caused by isotropic perturbation. Using the detailed balance relation
and dissipative properties of the master equation, we can considerably diminish the number
of parameters specifying the model. This allows one to evaluate the Heisenberg operator of
molecular angular momentum.

1. Introduction

Molecular rotational relaxation is an intriguing problem. Being equally important for
chemical physics, rarefied gas dynamics, laser physics, and nonlinear spectroscopy, the
rotational relaxation demands adequate modelling of various types depending on the
considered problem. The following brief survey is aimed to demonstrate the variety of
modelling approaches. The corresponding list of refences can by no means be considered
as complete and contains only basic works known to the author.

In chemical physics of dense gases and liquids it is popular to treat the rotational
relaxation as a stochastic process in the three-dimensional space of classical angular
momentum (Sack 1957, Gordon 1965, 1968, McClung 1969, Fixman and Rider 1969,
Pierre and Steele 1972, Hubbard 1963, 1972, Burshtein and Temkin 1976, 1982).

In rarefied gases the rotational relaxation of molecules is generally unseparable from
their translational motion. This specifies the types of models used in gas dynamics: the
colliding rough spheres (Pidduck 1922, Condiffet al 1965) and convex smooth hard
axisymmetric bodies (Dahler and Sather 1962, Sandler and Dahler 1965, Curtiss 1967,
Hoffman 1969, Melville 1972). The relation of these models to those mentioned above was
traced (Filippov 1987). The model of the molecular differential scattering cross section with
only one variable referred to rotation—the rotational energy—was proposed by Borgnakke
and Larsen (1975) and was modified by Kuščer (1989). For a more complete list of
references see McCourtet al (1990), Zhdanov and Alievskiy (1989).

The above-mentioned models are classical. There is a class of problems where the
quantum nature of molecular rotation is principal. Such a situation takes place in nonlinear
spectroscopy and in the rapidly developing light-induced gas kinetics (LIGK) (Rautian and
Shalagin 1991). The rotational spectrum of molecules in gases is resolved due to high
intensity and monochromaticity of laser radiation. Quantum treatment of molecule rotation
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is unavoidable in some new problems in chemical physics, in the nuclear spin conversion
(Chapovsky 1990; Nagelset al 1996), in particular. In all of these cases the relaxation
models should be purely quantum, because one is not only interested in the evolution of
rotational levels populations, but in the relaxation of polarizations given by nondiagonal
elements of the molecular density matrix. The orientational relaxation of quantum angular
momentumĴ in isotropic surrounding was analysed by Verri and Gorini (1978). Recently, a
simple related model was proposed (Il’ichov 1995) which took into account the translational
motion of molecules.

In this paper a semiphenomenological model of quantum angular momentum relaxation
is suggested. For simplicity, the influence of translational motion will be neglected. We
are going to account for transitions between variousJ -levels as well as deorientational
transitions between magneticM-sublevels. These transitions are assumed to take place
between the nearest-neighbour levels in the space of quantum numbersJ andM. Being
very strong, this assumption provides simple algebraic properties of the proposed model.

2. Quantum master equation

The rotator, which will be used as a model of linear molecule, is a nonlinear quantum
system. That means that its free Hamiltonian

Ĥ0 = ω(Ĵ · Ĵ) (2.1)

is not a generator of the rotator’s dynamic symmetry group (Malkin and Man’ko 1979).
Throughout this paper we set ¯h = 1. The correct description of irreversible evolution of
nonlinear quantum systems is a problem. We are not going to derive the corresponding
master equation for the molecular density matrixρ̂ but postulate it following the work by
Haakeet al (1986) on a damped nonlinear quantum oscillator. We assume by analogy that
the interaction Hamiltonian has the form

Ĥint = q(Ĵ )Ĵ (+) · γ̂ + γ̂† · Ĵ (−)q̄(Ĵ ) (2.2)

whereγ̂ andγ̂† are some vector operators of the environment,Ĵ (+) andĴ (−) = (Ĵ (+))† are
molecular vector operators responsible, respectively, for the transitionsJ 7→ J ± 1, q(Ĵ )
is a function of the angular momentum operator valueĴ , the line over the symbol stands
for complex conjugation. It is widely believed in physics that the interaction between a
system and its environment can be represented as a combination of operator products, where
various factors operate in the spaces of the system and environment separately†. From this
point of view the Hamiltonian (2.2) is the simplest example of such an interaction relevant
for our needs.

Equation (2.13) from Haakeet al (1986) suggests the following form of the master
equation in second order with respect toĤint:

∂t ρ̂(t) = −i[Ĥ0, ρ̂(t)] + [D̂ρ̂(t), q(Ĵ )Ĵ (+)] + [Û ρ̂(t), Ĵ (−)q̄(Ĵ )]
+[Ĵ (−)q̄(Ĵ ), ρ̂(t)D̂†] + [q(Ĵ )Ĵ (+), ρ̂(t)Û †] (2.3)

whereÛ andD̂ are operators causing, respectively, up- and down-transitions with respect
to J . Thus, we have

D̂ = Ĵ (−)g(Ĵ ) Û = h(Ĵ )Ĵ (+). (2.4)

† Such a representation is rarely possible if there are some stable correlations between the subsystem and
environment caused by fundamental symmetry laws (Chapovsky 1996). In this case the notion of the subsystem
seems to fail.
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The specification ofq(Ĵ ) with subsequent determination ofh(Ĵ ) andg(Ĵ ) is possible only
after a choice ofĴ (±). In the following sections we will need to perform calculations
with operator commutators. Hence, it would be convenient ifĴ (±) could be handled with
elements of some Lie algebra. Such a choice is actually possible. It turns out that the
10-dimensional space spanned byĴ (±), Ĵ , and Ĵ may at the same time be considered as
the Lie algebra of the real symplectic group Sp(4,R) or, speaking more precisely, of its
simply connected covering metaplectic group Mp(4,R) (see, for example Perelomov 1985).
In appendix A we introduce the representation of the Lie algebra in the form we need. We
accompany it with some motivations of the proposed choice and a discussion on algebraic
properties of the set{Ĵ , Ĵ , Ĵ (+), Ĵ (−)}. Using the explicit form of these operators given
therein, one can easily prove thatĴ (±) are vector operators with respect toĴ :

[Ĵi , Ĵ
(±)
j ] = iεijkĴ

(±)
k (2.5)

with the mutual commutation relations

[Ĵ (+)i , Ĵ
(+)
j ] = [Ĵ (−)i , Ĵ

(−)
j ] = 0

[Ĵ (+)i , Ĵ
(−)
j ] = −δij (2Ĵ + 1)− 2iεijkĴk

(2.6)

and with the skew-Hermitian property(Ĵ (+))† = Ĵ (−). The commutator

[Ĵ (±), Ĵ ] = ∓Ĵ (±) (2.7)

shows that̂J (+) andĴ (−) really are raising and lowering operator with respect to the angular
momentum value. Relations (2.5)–(2.7) together with

[Ĵi , Ĵj ] = iεijkĴk [Ĵi , Ĵ ] = 0 (2.8)

form a complete set of commutators for the considered algebra.
There is a relation betweenh(Ĵ ) andg(Ĵ ) stipulated by the existence of the equilibrium

density matrixρ̂eq∝ exp[−βĴ (Ĵ +1)] (β = ω/kBT ) and the constraints which the detailed
balance puts on the transition rates between the rotational states{|J,M)} under equilibrium.
As one can see, the last four commutators in equation (2.3) contain the terms which account
for the transitions|J,M) ↔ |J ′,M ′), whereJ ′ − J = ±1,M ′ −M = 0,±1. One may
take any of these transitions for the test of the detailed balance. As a result one obtains

(h(Ĵ )q̄(Ĵ )+ h̄(Ĵ )q(Ĵ )) exp(βĴ ) = (g(Ĵ )q(Ĵ )+ ḡ(Ĵ )q̄(Ĵ )) exp(−βĴ ). (2.9)

This equation has the general solution

h(Ĵ ) = f (Ĵ ) exp(−βĴ ) g(Ĵ ) = f̄ (Ĵ ) exp(βĴ ) (2.10)

where the functionf (Ĵ ) is arbitrary for the moment. In the next section we show that there
may be a unique simple relation betweenf (Ĵ ) and q(Ĵ ), provided equation (2.3) has a
quadratic Lyapunov functional.

3. The Lyapunov functional

It is known that every classical master equation for a probability distributionp(n) possesses
the Lyapunov functional

∑
n p(n)

2peq(n)
−1, wherepeq(n) is the corresponding equilibrium

distribution (see, e.g. van Kampen 1984). In this section we will look for conditions under
which the quantum master equation (2.3) has the Lyapunov functional of the form

L(t) = Tr(ρ̂(t)ρ̂−(1−α)eq ρ̂(t)ρ̂−αeq ) (3.1)

which is suggested by its classical counterpart with the natural generalization to the case
of noncommuting quantities. The exponentα (0 6 α 6 1

2) should be determined. We will
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see thatα = 1
2, so that the symmetric partition of̂ρ−1

eq takes place. As will be shown, the
existence of functional (3.1) provides plenty of useful simplifications.

Now we introduce the notations

ϕ̂(t) = ρ̂−(1−α)/2eq ρ̂(t)ρ̂−α/2eq ρ̂(t) = ρ̂(1−α)/2eq ϕ̂(t)ρ̂α/2eq (3.2)

where ϕ̂(t) is assumed to be an operator-valued vector in a Hilbert spaceH . ThenL(t)
can be written as a square norm of the vectorϕ̂(t) with respect to the trace scalar product
in H :

L(t) = Tr(ϕ̂†(t)ϕ̂(t)) ≡ (ϕ̂(t), ϕ̂(t)) = ||ϕ̂(t)||2. (3.3)

The Lyapunov character of the functionalL(t) (L̇(t) 6 0) means that the norm of̂ϕ(t)
decreases with time if the evolution ofρ̂(t) is governed by equation (2.3).

Let us transform equation (2.3) into the equation forϕ̂(t):

∂t ϕ̂(t) = −i[Ĥ0, ϕ̂(t)] +Kϕ̂(t) (3.4)

where

Kϕ̂(t) ≡ Ĵ (−)f̄ (Ĵ ) exp(αβĴ )ϕ̂(t) exp(−αβĴ )q(Ĵ )Ĵ (+) − q(Ĵ )Ĵ (+)Ĵ (−)f̄ (Ĵ )ϕ̂(t)
+Ĵ (−)q̄(Ĵ ) exp[(α − 1)βĴ ]ϕ̂(t) exp[(1− α)βĴ ]f (Ĵ )Ĵ (+)

−ϕ̂(t)f (Ĵ ) exp(βĴ )Ĵ (+)Ĵ (−)q̄(Ĵ )+ f (Ĵ ) exp(−αβĴ )Ĵ (+)ϕ̂(t)Ĵ (−)
× exp(αβĴ )q̄(Ĵ )− Ĵ (−)q̄(Ĵ )f (Ĵ ) exp(−βĴ )Ĵ (+)ϕ̂(t)
+q(Ĵ ) exp[(1− α)βĴ ]Ĵ (+)ϕ̂(t)Ĵ (−) exp[(α − 1)βĴ ]f̄ (Ĵ )

−ϕ̂(t)Ĵ (−)f̄ (Ĵ ) exp(−βĴ )q(Ĵ )Ĵ (+).
In equation (3.4) the kinetic superoperatorK is introduced. In accordance with (3.3) we
have

L̇(t) = 2 Re(ϕ̂(t),Kϕ̂(t)) 6 0. (3.5)

We will try to selectα andf (Ĵ ) so as to makeK Hermitian. In this case the superoperator
−K becomes positive†.

Let us begin with the evident observation that there is a unique operator-valued vector
ϕ̂0 = ρ̂1/2

eq annihilated byK. We will show that one can construct two vector superoperators
L andR which, in contrast toK, are linear with respect tôJ (+) andĴ (−) and annihilateϕ̂0

as well. The main property of the new superoperators is thatK can be expressed through
L, R, and their adjoint:

K = −L† · L−R† · R. (3.6)

Hermiticity and negativity of the RHS of equation (3.6) are evident. Provided representation
(3.6) is possible, one may apply toK all highly developed techniques of positive Hermitian
operators. The full scale taking advantage of expression (3.6) goes beyond the scope of the
present work.

Let us construct the superoperatorsL andR. First, following the method of thermofield
dynamics (Umezavaet al 1982), we introduce two independent sets of superoperators—left,

† Strictly speaking, the quadratic form−Re(ϕ̂,Kϕ̂) is positive for only thosêϕ-vectors which are related by (3.2)
to positive operators of trace class. Nevertheless, it is convenient to assume−K positive in its domainD(K) ⊂ H .
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{J (+)
L ,J (−)

L ,JL,JL}, and right,{J (+)
R ,J (−)

R ,JR,JR}, with

J (+)
L ϕ̂ ≡ Ĵ (+)ϕ̂ J (−)

L ϕ̂ ≡ Ĵ (−)ϕ̂
JLϕ̂ ≡ Ĵ ϕ̂ JLϕ̂ ≡ Ĵ ϕ̂
J (+)
R ϕ̂ ≡ ϕ̂Ĵ (−) J (−)

R ϕ̂ ≡ ϕ̂Ĵ (+)
JRϕ̂ ≡ ϕ̂Ĵ JRϕ̂ ≡ ϕ̂Ĵ .

(3.7)

Left and right superoperators apparently commute with each other and, taken separately,
form two isomorphic Lie algebras of Sp(4,R) group. Now we introduce the explicit form
of the superoperators from (3.6):

L = J (−)
L aL(JL)− bR(JR)J (+)

R L† = āL(JL)J (+)
L −J (−)

R b̄R(JR)
R = J (−)

R aR(JR)− bL(JL)J (+)
L R† = āR(JR)J (+)

R −J (−)
L b̄L(JL).

(3.8)

Since‖Lϕ̂0‖2+‖Rϕ̂0‖2 = −(ϕ̂0,Kϕ̂0) = 0, bothL andR should annihilate the ‘vacuum’
vector ϕ̂0:

Lϕ̂0 =Rϕ̂0 = 0. (3.9)

The last equation gives the relations between the functionsaL(J ), aR(J ), bL(J ), bR(J ):

bR(J ) = exp(−βJ )aL(J ) bL(J ) = exp(−βJ )aR(J ). (3.10)

Comparing (3.4) with (3.6), (3.8), and (3.10), one obtains, after some algebraic
manipulations (see appendix B for details), the following unique condition of compatibility:

α = 1
2 f (J ) = q(J )

aL(J ) = āR(J ) = q̄(J ) exp(βJ/2) bL(J ) = b̄R(J ) = q(J ) exp(−βJ/2). (3.11)

As we see, under these conditions the proposed kinetic superoperatorK is Hermitian,
negative, and is specified by the functionq(J ).

4. Heisenberg equation of motion

Now we return to equation (2.3) and rewrite it in the compact form

∂t ρ̂(t) = Dρ̂(t). (4.1)

The solution of this equation̂ρ(t) = St ρ̂(0) introduces the semigroup{St |t > 0} of
superoperators

St = exp(Dt) =
∞∑
n=0

tn

n!
Dn (4.2)

generated byD. The series in (4.2) is formal, since even its weak convergency is not
apparently guaranteed for arbitraryq(J ).

Using the superoperatorSt and the trace scalar product (3.3), the average value of an
observableÂ may be expressed as

〈A〉t = (Â,St ρ̂(0)) = (S†t Â, ρ̂(0)). (4.3)

The t-dependent operator̂A(t) ≡ S†t Â (Â(0) = Â) is the observable in the Heisenberg
representation. It is governed by the equation

∂t Â(t) = D†Â(t) = i[Ĥ0, Â(t)] + D̂† · [Â(t), Ĵ (−)q̄(Ĵ )] + [q(Ĵ )Ĵ (+), Â(t)] · D̂
+Û † · [Â(t), q(Ĵ )Ĵ (+)] + [Ĵ (−)q̄(Ĵ ), Â(t)] · Û . (4.4)
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Being expressed through the formal Taylor expansion ofS†t , the general solution of the
Heisenberg equation (4.4) faces the same problem of convergency. Nevertheless, one
may expect that the series

∑∞
n=0 t

n(D†)nÂ/n! may be made summable at least for certain
observables andq(J ).

It is reasonable to consider the operation(D†)nÂ whenÂ = Ĵ . Using the commutators
(2.5)–(2.8) and the nonlinear relations between operators of symplectic algebra from
appendix A, one can prove that

D†Ĵ = c1(Ĵ )Ĵ . (4.5)

The repeated application ofD† gives

(D†)nĴ = cn(Ĵ )Ĵ . (4.6)

The operator coefficientscn(Ĵ ) are contained in the Taylor expansion ofĴ(t):

Ĵ(t) = Ĵ
∞∑
n=0

tn

n!
cn(Ĵ ). (4.7)

By taking into account (2.10) and (3.11) one obtains the following iterative equation for
these coefficients:

cn+1(Ĵ ) = 2q(Ĵ + 1)q̄(Ĵ + 1) exp[−β(Ĵ + 1)](2Ĵ + 3)

×[(Ĵ + 2)cn(Ĵ + 1)− (Ĵ + 1)cn(Ĵ )] − 2q(Ĵ )q̄(Ĵ ) exp(βĴ )(2Ĵ − 1)

×[Ĵ cn(Ĵ )− (Ĵ − 1)cn(Ĵ − 1)] (4.8)

wheren = 0, 1, 2, 3, . . . with the initial conditionc0(Ĵ ) = 1.
In the case of observablêA being an arbitrary functionF(Ĵ ) of the angular momentum

value (for example the rotation energyωĴ (Ĵ + 1)) we have a similar expression

F(Ĵ , t) =
∞∑
n=0

tn

n!
Fn(Ĵ ) (4.9)

where

Fn+1(Ĵ ) = 2q(Ĵ + 1)q̄(Ĵ + 1) exp[−β(Ĵ + 1)](Ĵ + 1)(2Ĵ + 3)(Fn(Ĵ + 1)− Fn(Ĵ ))
−2q(Ĵ )q̄(Ĵ ) exp(βĴ )Ĵ (2Ĵ − 1)(Fn(Ĵ )− Fn(Ĵ − 1)) (4.10)

andF0(Ĵ ) = F(Ĵ ).

5. Discussion

Summarizing, we see that the initially proposed kinetic model (2.3) may be rendered concrete
by reducing the number of independent parameters which specify the model. In this way
we make essential use of the supposed existence of the special Liapounov functional (3.1).
This allows us to introduce the Hermitian and negative kinetic superoperatorK. Then this
is the property of the symplectic algebra that allows us to obtain the solutions of Heisenberg
equation for the relevant observablesĴ(t) andF(Ĵ , t).

With (4.7) and (4.10) one can evaluate the equilibrium correlation functions〈J(t)J(0)〉eq

and 〈F(J, t)F (J,0)〉eq. We must settle, before, what should be meant under correlation
functions for operators. For the sake of clarity, we take two arbitrary Heisenberg observables
Â(t) and B̂(t) and introduce their correlation function〈A(t)B(0)〉eq using the operational
approach to quantum probability (Davies and Lewis 1970). Whent > 0 the measurement
of B̂ precedes the measurement ofÂ, so that the result of this subsequent measurement is
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conditioned by the first one. Assuming that the observableB̂ has purely discrete spectrum
{b1, b2, . . .} with the associated set of projections{P̂1, P̂2, . . .}, so thatB̂ = ∑

i bi P̂i , we
have the following formal accounting for the order of measurements in the correlation
function definition:

〈A(t)B(0)〉ρ̂ def=
∑
i

bi Tr(Â(t)P̂i ρ̂P̂i). (5.1)

It is evident from (5.1) that generally, in contrast to the classical case, limt→+0〈A(t)B(0)〉ρ̂ 6=
limt→+0〈A(0)B(t)〉ρ̂ for noncommuting observableŝA and B̂. For our present purposes
these properties are insignificant since the observables (4.7) (as well as (4.9)) are commuting
for all t .

The functionq(J ) remains unspecified. This is an open problem. In the case of rapidly
decreasingq(J ) which neutralizes the term exp(βJ ) in (4.10), the numerical calculation of
〈J(t)J(0)〉eq gives a distinctive abating profile. The author does not exhibit these numerical
results because of their evident little value in the present stage of research. If we take, for
example,q(J ) = constant, the corresponding series will demonstrate rapid divergency. This
is the manifestation of the mentioned formal nature of the Taylor expansion (4.2).

An alternative approach exists which does not face the problem of convergency of Taylor
expansions. We mean the evaluation of eigenvalues and corresponding operator-valued
eigenfunctions of the kinetic superoperatorK (3.6). The abilities of such an approach will
be analysed elsewhere.
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Appendix A

We begin with a well known mathematical fact—the two–one correspondence between the
set of two-component spinorsψ = column(ψ1, ψ2) and the set of triples of orthogonal
vectorsg1, g2, andg3 in the three-dimensional Euclidian space:

g1 = 1
4(ψ̄στ ψ̄ − ψτσψ)

g2 = i

4
(ψ̄στ ψ̄ + ψτσψ)

g3 = 1
2ψ̄σψ

(A.1)

whereσ = enσn (the summation is meant overn = 1, 2, 3); en are unit vectors of a
laboratory frame,σn are the Pauli matrices,τ = iσ2 is the metric spinor, the line over
ψ stands for complex conjugation, the left symbolsψ̄ and ψ in all matrix products in
(A.1) should be considered as lines. Vectors (A.1) hold the relations(gi · gj ) = g2δij ,
(gi × gj ) = εijkgkg (i, j, k = 1, 2, 3; g = ψ̄ψ/2). One can make sure that the left actions
of the group SU(2) on the spinorψ causes the rotation of the threefold{g1, g2, g3} as a
solid body.
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Now we are substituting the components of the spinorψ with a pair of annihilation
operators,â1 and â2, of two independent bosonic modes with the standard commutation
relations [̂aα, â

†
β ] = δαβ , [âα, âβ ] = [â†α, â

†
β ] = 0 (α, β = 1, 2). Upon this substitution we

have

g3 7→ Ĵ = 1
2 â
†σâ (A.2)

where the operatorŝJn hold the well known commutators of angular momentum components:
[Ĵi , Ĵj ] = iεijkĴk and, so, realize a representation of ASU(2) (the Lie algebra of the group
SU(2)). This is the canonical realization (or bosonization) of ASU(2) (see, e.g. Biedenharn
and Louck 1981). For the vectorsg1 andg2, we have

g− ≡ g1− ig2 7→ Ĵ (+) = 1
2 â
†στ â†

g+ ≡ g1+ ig2 7→ Ĵ (−) = − 1
2 âτσâ.

(A.3)

One can make sure that the operatorsĴ (+)n , Ĵ (−)n , and Ĵn (n = 1, 2, 3) together with the
scalar operator of the angular momentum value,

Ĵ = 1
2 â
†â (A.4)

make a representation of 10-dimensional algebra ASp(4,R)—the Lie algebra of the real
symplectic group Sp(4,R) and of its simply connected covering metaplectic group Mp(4,R)
(see, e.g. Perelomov 1985).

The following shows howĴ (+) and Ĵ (−) act in the basis set of molecular rotational
states|J,M) ≡ |J +M)1 ⊗ |J −M)2, where |n1)1 and |n2)2 are the number states for,
respectively, the bosonic modesâ1 and â2:

Ĵ
(+)
+ |J,M) = −

√
(J +M + 1)(J +M + 2)|J + 1,M + 1)

Ĵ
(+)
− |J,M) =

√
(J −M + 1)(J −M + 2)|J + 1,M − 1)

Ĵ
(+)
3 |J,M) =

√
(J +M + 1)(J −M + 1)|J + 1,M)

Ĵ
(−)
+ |J,M) =

√
(J −M)(J −M − 1)|J − 1,M + 1)

Ĵ
(−)
− |J,M) = −

√
(J +M)(J +M − 1)|J − 1,M − 1)

Ĵ
(−)
3 |J,M) =

√
(J +M)(J −M)|J − 1,M).

(A.5)

Here Ĵ (+)± = Ĵ (+)1 ± iĴ (+)2 , Ĵ (−)± = Ĵ (−)1 ± iĴ (−)2 .
Now we are going to derive some properties ofĴ , Ĵ (+), andĴ (−) that are remarkable for

many reasons. Let us introduce the superoperatorCL which acts on any vector operatorÂ as
the left vector product of̂A by Ĵ (see, e.g. Biedenharn and Louck 1981):CLÂ ≡ (Ĵ × Â).
It is easy to verify that

(CL − i)(CL + iĴ )(CL − i(Ĵ + 1))Â = 0 (A.6)

for any Â. That means that̂A, if being the eigenoperator forCL, must have one of the
three operator eigenvalues: i,−iĴ , or i(Ĵ + 1) which stand to the left of̂A. The situation
with the right vector product bŷJ , ÂCR ≡ (Â× Ĵ), is the same; but the eigenvalues stand
to the right.

Using expressions (A.2)–(A.4) or (A.5), one can prove thatĴ (+) and Ĵ (−) are the
eigenoperators forCL andCR:

(Ĵ × Ĵ (+)) = i(Ĵ + 1)Ĵ (+) (Ĵ (+) × Ĵ) = −iĴ (+)Ĵ

(Ĵ × Ĵ (−)) = −iĴ Ĵ (−) (Ĵ (−) × Ĵ) = iĴ (−)(Ĵ + 1).
(A.7)
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The vector product(Ĵ (+) × Ĵ (−)) is, naturally, a vector operator with respect toĴ ; that is

[Ĵi , (Ĵ
(+) × Ĵ (−))j ] = iεijk(Ĵ

(+) × Ĵ (−))k. (A.8)

At the same time, the operator(Ĵ (+) × Ĵ (−)) commutes withĴ . This suggests that
(Ĵ (+) × Ĵ (−)) = a(Ĵ )Ĵ . By making the left scalar product of this equation withĴ and by
taking into account the relations

(Ĵ (+) · Ĵ (−)) = Ĵ (2Ĵ − 1) (Ĵ (−) · Ĵ (+)) = (Ĵ + 1)(2Ĵ + 3) (A.9)

which can be derived from (A.5), we arrive at

(Ĵ (+) × Ĵ (−)) = i(2Ĵ − 1)Ĵ . (A.10)

In a similar way we obtain

(Ĵ (−) × Ĵ (+)) = −i(2Ĵ + 3)Ĵ . (A.11)

Appendix B

The agreement between (3.4) and (3.6) gives the following three conditions:

āL(J )aL(J ) = q(J )f̄ (J ) exp(βJ )

āR(J )aR(J ) = q̄(J )f (J ) exp(βJ )
(B.1)

Ĵ (−)aL(Ĵ )ϕ̂āL(Ĵ ) exp(−βĴ )Ĵ (+) + Ĵ (−)āR(Ĵ ) exp(−βĴ )ϕ̂aR(Ĵ )Ĵ (+)
= Ĵ (−)f̄ (Ĵ ) exp(αβĴ )ϕ̂ exp(−αβĴ )q(Ĵ )Ĵ (+)
+Ĵ (−)f̄ (Ĵ ) exp[(α − 1)βĴ ]ϕ̂ exp[(1− α)βĴ ]f (Ĵ )Ĵ (+) (B.2)

āL(Ĵ )Ĵ
(+)ϕ̂Ĵ (−)aL(Ĵ ) exp(−βĴ )+ aR(Ĵ ) exp(−βĴ )Ĵ (+)ϕ̂Ĵ (−)āR(Ĵ )
= f (Ĵ ) exp(−αβĴ )Ĵ (+)ϕ̂Ĵ (−)q̄(Ĵ ) exp(αβĴ )

+q(Ĵ ) exp[(1− α)βĴ ]Ĵ (+)ϕ̂Ĵ (−)f̄ (Ĵ ) exp[(α − 1)βĴ ]. (B.3)

From (B.1) we haveq(J )f̄ (J ) = q̄(J )f (J ). There are two alternatives which follow from
(B.2):

(1)

aL(J ) = f̄ (J ) exp(αβJ ) āL(J ) = q(J ) exp[(1− α)βJ ]

aR(J ) = f (J ) exp[(1− α)βJ ] āR(J ) = q̄(J ) exp(αβJ )
(B.4)

(2)

aL(J ) = q̄(J ) exp[(α − 1)βJ ] āL(J ) = f (J ) exp[(2− α)βJ ]

aR(J ) = q(J ) exp(−αβJ ) āR(J ) = f̄ (J ) exp[(1+ α)βJ ].
(B.5)

From (B.3) one has:
(1′)

aL(J ) = q̄(J ) exp[(1+ α)βJ ] āL(J ) = f (J ) exp(−αβJ )
aR(J ) = q(J ) exp[(2− α)βJ ] āR(J ) = f̄ (J ) exp[(α − 1)βJ ]

(B.6)

(2′) is identical to (1). All these conditions are consistent with (B.1).
From (B.4) we obtain:

α = 1
2 f (J ) = q(J )

aL(J ) = āR(J ) = q̄(J ) exp(βJ/2) bL(J ) = b̄R(J ) = q(J ) exp(−βJ/2). (B.7)
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From (B.5) we obtain:

α = 1
2 f (J ) = q(J ) exp(−2βJ )

aL(J ) = āR(J ) = q̄(J ) exp(−βJ/2) bL(J ) = b̄R(J ) = q(J ) exp(−3βJ/2).
(B.8)

From (B.6) we obtain:

α = 1
2 f (J ) = q(J ) exp(2βJ )

aL(J ) = āR(J ) = q̄(J ) exp(3βJ/2) bL(J ) = b̄R(J ) = q(J ) exp(βJ/2).
(B.9)

We see that the alternative (2) is compatible neither with (1′) nor (2′), whereas (1) and (2′)
are identical. So we have the unique solution (B.7).
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